Reconstructing the Qo Site of Plasmodium falciparum bc1 Complex in the Yeast Enzyme
نویسندگان
چکیده
The bc 1 complex of the mitochondrial respiratory chain is essential for Plasmodium falciparum proliferation, the causative agent of human malaria. Therefore, this enzyme is an attractive target for antimalarials. However, biochemical investigations of the parasite enzyme needed for the study of new drugs are challenging. In order to facilitate the study of new compounds targeting the enzyme, we are modifying the inhibitor binding sites of the yeast Saccharomyces cerevisiae to generate a complex that mimics the P. falciparum enzyme. In this study we focused on its Qo pocket, the site of atovaquone binding which is a leading antimalarial drug used in treatment and causal prophylaxis. We constructed and studied a series of mutants with modified Qo sites where yeast residues have been replaced by P. falciparum equivalents, or, for comparison, by human equivalents. Mitochondria were prepared from the yeast Plasmodium-like and human-like Qo mutants. We measured the bc 1 complex sensitivity to atovaquone, azoxystrobin, a Qo site targeting fungicide active against P. falciparum and RCQ06, a quinolone-derivative inhibitor of P. falciparum bc 1 complex.The data obtained highlighted variations in the Qo site that could explain the differences in inhibitor sensitivity between yeast, plasmodial and human enzymes. We showed that the yeast Plasmodium-like Qo mutants could be useful and easy-to-use tools for the study of that class of antimalarials.
منابع مشابه
Subtle changes in endochin-like quinolone structure alter the site of inhibition within the cytochrome bc1 complex of Plasmodium falciparum.
The cytochrome bc1 complex (cyt bc1) is the third component of the mitochondrial electron transport chain and is the target of several potent antimalarial compounds, including the naphthoquinone atovaquone (ATV) and the 4(1H)-quinolone ELQ-300. Mechanistically, cyt bc1 facilitates the transfer of electrons from ubiquinol to cytochrome c and contains both oxidative (Qo) and reductive (Qi) cataly...
متن کاملMolecular basis for atovaquone binding to the cytochrome bc1 complex.
Atovaquone is a substituted 2-hydroxynaphthoquinone that is used therapeutically to treat Plasmodium falciparum malaria, Pneumocystis carinii pneumonia, and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting the cytochrome bc1 complex. We have examined the interaction of atovaquone with the bc1 complex isolated from Saccharomyces cerevisiae, a surrogate, nonp...
متن کاملInsights into cytochrome bc 1 complex binding mode of antimalarial 2-hydroxy-1,4-naphthoquinones through molecular modelling
BACKGROUND Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo sit...
متن کاملUnderstanding the Mechanism of Atovaquone Drug Resistance in Plasmodium falciparum Cytochrome b Mutation Y268S Using Computational Methods
The rapid appearance of resistant malarial parasites after introduction of atovaquone (ATQ) drug has prompted the search for new drugs as even single point mutations in the active site of Cytochrome b protein can rapidly render ATQ ineffective. The presence of Y268 mutations in the Cytochrome b (Cyt b) protein is previously suggested to be responsible for the ATQ resistance in Plasmodium falcip...
متن کاملDFT Studies and Topological Analyses of Electron Density on Acetophenone and Propiophenone Thiosemicarbazone Derivatives as Covalent Inhibitors of Falcipain-2, a Major Plasmodium Falciparum Cysteine Protease
Thiosemicarbazones (TSCs) possess significant antimalarial properties believed to be linked to the inhibition of major cysteine proteases, such as falcipain-2, in Plasmodium falciparum. However, the binding modes of TSCs to the active site of these enzymes are not clear. As a result of this, the nature of the bonding interactions between the active site of falcipain-2 and different derivatives ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013